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Abstract-An isotropic elastic medium containing a void is loaded at infinity by given stresses. The problem
of finding a minimizing void shape for the stress concentration is formulated. It is proved that a sufficient
condition for a surface to be a minimizer is that the two surface principal stresses be constant and equal. A
class of ellipsoids having this property is exhibited and relations between the applied stresses and the
ellipsoid parameters are established.

I. INTRODUCTION

In this paper, we formulate and study the problem of determining a cavity shape which
minimizes the stress concentration, if the cavity lies within an infinite homogeneous and
isotropic elastic medium, and the stress at infinity is given. The stress concentration is
minimized by minimizing the maximum stress in the euclidean norm.

In Section 2, the variational problem is formulated, and in Section 3 a sufficient condition for
a shape to be a minimizer is established. This condition, which stipulates that the two
non-vanishing principal stresses be constant and equal at the void surface, is an extension tc
three-dimensional states of stress of the "constant-stress surface" condition studied in[l, 2] in
connection with the more elementary cases of axisymmetric torsion and plane deformation.

In Section 4, we show that surfaces with the property arrived at in Section 3 can be realized
as ellipsoids, provided the applied stress is suitably restricted. Using results from [3], we arrive
at relations between the components of the applied stress and the parameters of the ellipsoid.

2. FORMULATION OF THE PROBLEM

Consider an infinite homogeneous and isotropic elastic medium with Lame moduli A, Il
containing a cavity with surface n. Let Y be the region bounded externally by n and let Y­
denote its complement. We assume that n is suitably regular.

We suppose that body force is absent and assume that the stress u(x) in Y- satisfies the
usual elasticity equations, the free surface conditions on n and the condition at infinity

u(x) = 0'0 +0(1) as Ixl-+ 00, (2.1)

where 0'0 is a constant tensor. It is important in what follows that the last condition is equivalent
to (see [4,5])

(2.2)

Let us introduce the norm 110'11 of u(x) defined by

(2.3)

It is convenient to extend u(x) as zero inside n and introduce the function space ~(A, p., UO)
consisting of all 0' having bounded norm.

We say that n* is a minimizing surface if the corresponding stress field 0'* is such that

110'11 ~ 110'*11 for every 0' E ~(A, Il, 0'0).
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(2.4)
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The general variational problem is to describe the set of all minimizing surfaces D*. In this
paper we find a class of minimizing surfaces by suitably restricting the stress at infinity aO.

3. SURFACES OF CONSTANT AND EQUAL PRINCIPAL STRESSES

At a free surface there are at most two non-zero principal stresses. Here we consider
surfaces such that these stresses are both equal and constant over the whole surface. We show
that such surfaces are minimizers.

Theorem. Let a* E ~(A, j.L, UO) be such that

(3.1)

where 7 is a constant and nj are the components of the unit normal to n•. Then:

(a) D* is a minimizing surface;

(b) Ila*1I = max {J2ltr aOI, laol};

1
(c) 7 = 2tr aO.

In order to prove this theorem, we need the following result from potential theory.

Lemma. Let </J be continuous on n and satisfy

(3.2)

(3.3)

to</J = 0 on Y-, (3.4)

where a is a constant. Then:
(a) either I</JI exceeds lal at a point of n or </J = a on Y-;
(b) if </J is constant on n, then </J = a on Y-.

One can establish this lemma by transforming the difference </J - a through a Kelvin inversion to
a function which is harmonic on a bounded region and applying the maximum principle (see,
e.g. [6]).

Proof of the Theorem. First we will prove (3.3) and (3.2). As is well known,

to tr a* = 0 on V;.

From (3.1), we get tr a* = 27 on D* and from (2.2) there follows

Thus, Part (b) of the lemma furnishes the conclusion that tr a* is constant on V;,

tr a* = tr UO = 27 on V;,

which disposes of (3.3).
Using the fact that tr a* = const., the field equations yield

toa* = 0 on V;.

Accordingly,

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

which shows that la*12 is subharmonic on V; and therefore obeys the maximum principle.



Thus,
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110'*11 = max {sup 10'*1, luOI}·
o.
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(3.10)

From (3.1), (3.7), there follows

(3.11)

which concludes the proof of (3.2).
It remains to be shown that if 0' E f1(A., IL, 0'0), then 110'11 ~ liu*ll. We have two cases to

consider. From (3.2), we know that either

(3.12)

The first case is trivial because 110'11 ~ 10'°1.

Assume the second of (3.12) holds. Clearly, null ~ sup 10'1. It is easy to show that for a tensor
°

0' with one principal stress zero, y21ul ~ Itr 0'1. Thus,

1
110'11 ~ y2 s~p Itr 0'1·

Since Atr 0' =0, and in view of (2.2), Part (a) of the lemma implies

sup Itr 0'1 ~ Itr ut
°

which together with (3.13) furnishes

3.13)

(3.14)

(3.15)

The proof is now complete.
It is important to note that as seen from (3.1), (3.3), of the two possible values for 110'*11

indicated in (3.2), the one 110'*11 = O/y2)ltr 0'°1 is assumed when 10'*1 has its maximum at the void
surface, whereas the other value corresponds to the case when the maximum is at infinity.
Thus, if the applied stess 0'0 obeys the condition Itr 0'°1 ~ y21ut then the maximum value of
10'11<1 occurs at a point of the void surface. We will return to this point in the next section.

4. ELLIPSOIDS AS MINIMIZERS

Now we will show that surfaces satisfying the conditions of the theorem can be realized as
ellipsoids. We will use an explicit expression for the stress at points on the surface of an
ellip!>oidal void, which was obtained in the work[3].

Let the ellipsoidal void be given by the equation

(4.1)

where the tensor aj; has principal values a" a2' a3 which are the semi-axes of the ellipsoid.
Denote by n(x) the unit normal to the ellipsoid at the point x. The formulas

(4.2)

establish a one-to-one correspondence between points x of the ellipsoid and points n of the unit
sphere. This enables one to transform functions defined on the surface of the ellipsoid into
functions defined on the surface of the unit sphere. In particular, let u(n) represent the stress
on the surface of the ellipsoid.
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For the general case of an ellipsoidal inclusion in an anisotropic medium, it was shown in [3]
that the surface stress a(n) admits the representation

(4.3)

where ero denotes the stress at infinity, and S{n) is a fourth-order tensor function of n and the
elastic constants. The constant fourth-order tensor ~ is given by

det aJ 3~ = (S{n» =~ S{n)p (n) dn,

which is the mean value over the unit sphere with respect to the weight function

(4.4)

For the case of an ellipsoidal void in an isotropic medium, S{n) and ~ are given explicitly in
[3], ~ being expressed in terms of elliptic integrals. These results enable one to show that

(4.6)

if and only if ero is given by

(4.7)

Tedious, but routine calculations lead to the conclusion that the principal axes of ero coincide
with those of the ellipsoid, and the principal stresses er~, at a~ are expressed as

(4.8)

(4.9)

It is easy to show by direct computation that the integrals Ip satisfy

(4.1O)

Accordingly, we may express er~ as

(4.11)

It is clear from these expressions that ellipsoids for which (4.6) hold do not exist for arbitrary
er~. In particular, since the integrals Ip are non-negative, the three quantities a~, ert er~ must
have the same sign. Furthermore, a calculation based upon (4.11) leads to

(4.12)

so that aO must conform to the inequality

(4.13)

This inequality ensures that the maximum of lal occurs at the surface of the void, and that

IIler*11 =\/2ltr erl (4.14)
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Our approach here has been to start with an ellipsoid and deduce stresses at infinity for
which the condition (4.6) holds. A preferable way would be to start with 0'0 and deduce the
corresponding shape or shapes for which (4.6) is satisfied. It would therefore be of interest to
investigate the invertibility of the mapping (ah a2, a3)-+(0'~' O'~, O'~) defined by (4.8).
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